- finite invariant measure
- Макаров: конечная инвариантная мера
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Quasi-invariant measure — In mathematics, a quasi invariant measure mu; with respect to a transformation T , from a measure space X to itself, is a measure which, roughly speaking, is multiplied by a numerical function by T . An important class of examples occurs when X… … Wikipedia
Measure (mathematics) — Informally, a measure has the property of being monotone in the sense that if A is a subset of B, the measure of A is less than or equal to the measure of B. Furthermore, the measure of the empty set is required to be 0. In mathematical analysis … Wikipedia
Invariant (mathematics) — In mathematics, an invariant is a property of a class of mathematical objects that remains unchanged when transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually… … Wikipedia
Invariant theory — is a branch of abstract algebra that studies actions of groups on algebraic varieties from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not … Wikipedia
Measure-preserving dynamical system — In mathematics, a measure preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Contents 1 Definition 2 Examples 3 Homomorphisms 4 … Wikipedia
There is no infinite-dimensional Lebesgue measure — In mathematics, it is a theorem that there is no analogue of Lebesgue measure on an infinite dimensional space. This fact forces mathematicians studying measure theory on infinite dimensional spaces to use other kinds of measures: often, the… … Wikipedia
Trivial measure — In mathematics, specifically in measure theory, the trivial measure on any measurable space ( X , Σ) is the measure μ which assigns zero measure to every measurable set: μ ( A ) = 0 for all A in Σ.Properties of the trivial measureLet μ denote the … Wikipedia
Haar measure — In mathematical analysis, the Haar measure is a way to assign an invariant volume to subsets of locally compact topological groups and subsequently define an integral for functions on those groups.This measure was introduced by Alfréd Haar, a… … Wikipedia
Ergodic measure — In mathematics, specifically in ergodic theory, an ergodic measure is a measure that satisfies the ergodic hypothesis for a given map of a measurable space into itself. Intuitively, an ergodic measure is one with respect to which the points of… … Wikipedia
Lebesgue measure — In mathematics, the Lebesgue measure, named after Henri Lebesgue, is the standard way of assigning a length, area or volume to subsets of Euclidean space. It is used throughout real analysis, in particular to define Lebesgue integration. Sets… … Wikipedia
Transverse measure — In mathematics, a measure on a real vector space is said to be transverse to a given set if it assigns measure zero to every translate of that set, while assigning finite and positive (i.e. non zero) measure to some compact set.DefinitionLet V be … Wikipedia